A Simple Solver for Linear Equations Containing Nonlinear Operators
نویسندگان
چکیده
منابع مشابه
A Simple Solver for Linear Equations Containing Nonlinear Operators
This paper presents a simple equation solver. The solver finds solutions for sets of linear equations extended with several nonlinear operators, including integer division and modulus, sign extension, and bit slicing. The solver uses a new technique called balancing, which can eliminate some nonlinear operators from a set of equations before applying Gaussian elimination. The solver's principal...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
A Fast Distributed Solver for Symmetric Diagonally Dominant Linear Equations
In this paper, we propose a fast distributed solver for linear equations given by symmetric diagonally dominant M-Matrices. Our approach is based on a distributed implementation of the parallel solver of Spielman and Peng by considering a specific approximated inverse chain which can be computed efficiently in a distributed fashion. Representing the system of equations by a graph G, the propose...
متن کاملLinear Differential Operators for Polynomial Equations
The results of this paper spring from the elementary fact that an algebraic function satisfies a linear differential equation. Let k0 be a number field and k0 be its algebraic closure. Let P ∈ k0(x)[y] be a squarefree polynomial of degree n in y. The derivation δ = d dx extends uniquely to the algebraic closure k0(x) of k0(x). We define the minimal operator associated with P to be the monic dif...
متن کاملFast solver for Toeplitz bidiagonal systems of linear equations
We present a new efficient parallel algorithm for solving the first order linear recurrence systems with constant coefficients which is equivalent to the problem of solving Toeplitz bidiagonal systems of linear equations. The algorithm is formulated in the terms of level 1 and 2 BLAS (Basic Linear Algebra Subprograms) routines AXPY and GER. We also discuss its platform-independent implementatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Software: Practice and Experience
سال: 1996
ISSN: 0038-0644,1097-024X
DOI: 10.1002/(sici)1097-024x(199604)26:4<467::aid-spe17>3.0.co;2-m